全球衛星定位系統工作原理與市場概述
(NAVSTAR GPS, NAVigation Satellite Timing And Ranging Glogal Positioning System, 以下簡稱GPS)
什麼是GPS ?
GPS 的基本定位原理
GPS相關名詞解釋
GPS 在消費性電子產品上的應用
GPS的市場現況
什麼是GPS ?
全球衛星定位系統(Global Position System, GPS)為美國國防部開發,利用規模遍及全球的人造衛星之航法系統,由24顆人造衛星所構成,其中包括三顆預備衛星。利用對民間開放的C/A碼標準測法,能得到數十米的精度,為無線電定位法的一種。衛星定位系統整體運作上可分成三部份:太空部分、地面部分以及訊號部分。
太空部分目前 GPS 衛星已發展至 Block II 型式的定位衛星, 由Rockwell International 製造,在軌道上重量約 1,900 磅, 太陽能接收板長度約17 呎,預期壽命為7.5年,於 1994年完成第24顆衛星的發射,整個GPS 系統正式宣告建構完成。因此目前太空中有24顆GPS 衛星可供定位運用,它們平均分佈於6個軌道面,每個軌道面上各有 4顆,距離地面高度約10,900海浬 (大約20,000公里), 呈55°角傾斜繞行地球運轉,繞行地球一周需 12 恆星時,每日可繞行地球 2周,這也就是說,不論任何時間,任何地點,包含北極, 南極,至少有 4 顆以上的衛星出現在我們的上空。
訊號部分GPS衛星產生兩組隨機電碼,一組稱為C/A碼,一組稱為P碼。C/A碼主要開放給民間使用,因此在精度上刻意降低,P碼則是美國國防部保留為其軍事用途的電碼,精度比C/A碼高很多,因此設有密碼,一般民間使用者無法解讀。一般而言,GPS衛星傳送兩種頻率的載波, L1 (Link 1) 載波的頻率為1575.42 MHZ,L2 (Link 2)載波的頻率為1227.60MHZ。
地面部分地面設施部分主要包含GPS監控站與使用者接收設備兩部份。
監控站包括一個主要控制站(Master Control Station)、五個監測站(Monitor Station)-分佈於夏威夷、亞森欣島、迪亞哥加西亞、瓜加林島、科羅拉多州、三個地面控制站(Ground Control Station)等。監測站主要負責追蹤所有衛星的運行位置、時間、氣象資料及電離層資料等,將每15秒觀測到所有資料,計算出每15分鐘一組的平滑化數據(Smoothed Data),傳送到主控制站後,由主控制站加以統合,計算出衛星星曆、時錶修正量、電離層改正係數,再轉換成導航訊息,以維護衛星系統的精度與正常運作,此部份由美國國防部負責,使用者無從瞭解也毋需瞭解此部份的技術。
使用者接收設備主要是一個衛星訊號接收器,依照不同的目的而有不同的定位能力,基本的功能是接收L1載波,分離出C/A電碼,進行最簡單的虛擬距離定位,也是一般車輛定位所使用的機型。其中必須注意的是:GPS衛星產生兩種不同的載波來承載所有電碼與訊息,其中C/A碼僅調置在L1載波上,P碼則分別調置在L1與L2載波上,並區別為P1與P2電碼,但美國軍方目前僅開放C/A碼僅民間使用。而一般間使用之接收機可經由差分修正(DGPS差分定位)達15呎或更加之準確度。但使用DGPS訊號需付費,一般使用者應考量成本及使用目地是否需要到如此精準。如做汽車導航您所需要知道的是您的相對位置配合您所使用之電子地圖,無需使用到那麼高精度之定位。
GPS 的基本定位原理
GPS 的定位是利用衛星基本三角定位原理,GPS 接收裝置以測量無線電信號的傳輸時間來量測距離,以距離來判定衛星在太空中的位置,這是一種高軌道與精密定位的觀測方式。假設衛星在11,000英哩高處,測量我們的距離,首先以11,000英哩為半徑,以此衛星為圓心畫一圓,而我們位置正處於球面上。 再假設第二顆衛星距離我們12,000英哩,而我們正處於這二顆球所交集的圓周上。現在我們再以第三顆衛星做精密定位,假設高度13,000 英哩,我們即可進一步縮小範圍到二點位置上,但其中一點為非我們所在的位置極有可能在太空中的某一點,因此,我們捨棄這一點參考點,選擇另一點為位置參考點。 如果要獲得更精確的定位,則必定要再測量第四個顆衛星,從基本物理的觀念上來說,以訊號傳輸的時間乘以速度即是我們與衛星的距離,我們將此測得的距離稱為虛擬距離,在 GPS 的測量上,我們測的是無線信號,速度幾乎達18萬6千英哩/Sec的光速,而時間卻短的驚人,甚至只要0.06秒,時間的測量需要二個不同的時錶,一個時錶裝置於衛星上以記錄無線電信號傳送的時間,另一個時錶則裝置在接收器上,用以記錄無線電信號接收的時間,雖然衛星傳送信號至接收器的時間極短,但時間上並不同步,假設衛星與接收器同時發出聲音給我們,我們會聽到二種不同的聲音,這是因為衛星從11,000英哩遠的地方傳來,所以會有延遲的時間,因此,我們可以延遲接收器的時間,從此延遲的時間╳速度,就是接收器到衛星的距離,此即為 GPS 的基本定位原理。
那麼GPS衛星究竟傳輸那些資料呢?衛星所傳輸的訊號包含有偽亂碼(Pseudo random code)、星曆資料(Ephemeris:英語發音為ee-fem-er-is)及Almanac。
1、偽亂碼(詳細請參見"GPS測距碼的作用")可幫助我們知道衛星訊號是由那一顆衛星所傳輸下來,所以偽亂碼即是一顆衛星的身份證(ID code)。其衛星編碼從1至32。因此我們可從GPS接收機上看到所接收到的衛星編號。但為何超過24個偽亂碼呢?這是因為當有新的替代衛星發射啟用時,可馬上給與這顆替代衛星一個新編號,當真正被淘汰的衛星不能使用時,就取代淘汰的衛星。
2、星曆資料含有衛星是否健康或不健康之資訊、現在日期、時間,這些資料使您的接收機知道現再時間日期其決定您目前的位置。
3、Almanac傳輸軌道資訊告知接收機各衛星所在天空之位置。
簡單的說GPS時如何運作:每一顆衛星會告訴您使用的接收機三件事,我是第幾號衛星,我現位置在那裏,我什麼時候送這訊息給您。當您的GPS接收機接收到這些資料後會將星曆資料及Almanac存起來使用,這些資料也用做修正GPS接收機上的時間。
GPS接收機比較每一衛星訊號接收到的時間及本身接收機的時間的不同,而計算出每一衛星道接收機的距離。接收機若在接收到更多衛星時,它可利用三角公式計算出接收機所在位置。三顆衛星可做所謂2D定位(經度及緯度),四顆或更多衛星可做所謂3D定位(經度、緯度及高度)。接收機繼續不段地更新您的位置,所以它可計算出您的移動方向及速度
另外影響GPS接收機準確度的因素是衛星(satellite geometry),(satellite geometry)是指以接收機為基準,各衛星的相對位置。GPS接收機與它所接收到訊號的衛星所構成的角度,會影響到定位的精準度﹐角度過小﹐或者接收到的衛星太過聚集﹐都會降低定位的精準度。衛星與衛星的角度小時,相對於角度大時,會產生較大的定位誤差。現在以二顆衛星為例說明,請看圖示(Please wait)假設衛星A及B於瞬間不移動,而且假設衛星A沒有受到其它干擾既衛星A提供非常準確的定位資訊,此時假設衛星B啟動SA或受其它干擾造成定位訊號有誤差時,接收機會認為衛星B的位置會是在衛星B1之位置,結果造成CD線段的誤差量,兩衛星的夾角大時CD線段較小,因此定位會較準確。如果這四顆衛星分佈在各不同方向,其定位的準確度會大大提升。若四顆衛星各分佈在東、西、南、北,則此時各衛星訊號交會面會更小,會使定位精度更高,既使有SA也可達100呎或更好的準確度。
當我們使用GPS接收機於車內、接近於高建物或隆起之高地,這都會造成衛星訊號被阻擋,所接收到的衛星數目減少,當接收機周邊越多阻礙物時,接收機就越難定位。但接收機接受到很多衛星時並不一定更精確,這還與衛星在天空的位置(azimuth and elevation)也會影響其精確度。
另外會影響其精確度的是叫"多重路徑"。簡單的說多重路徑就是無線電波被障礙物所反射。多重路徑的實例就是以往黑白及彩色電視機利用天線接收時,電視會發生多重影像,現在電視接電纜線再也不會發生這種情況。衛星訊號也會發生訊號受到反射而延遲到達接收機的時間,這會使接收機認為衛星北實際位置更遠,但這誤差不會超過15呎。
其它誤差還有受大氣層的影響含離子層及對流層,內部時鐘誤差。
常有初學者問買怎樣的GPS接收機最好?這沒有正確的答案,可從下面來討論:首先您要問自己要做何應用?買接收機是要買適合您的應用,如果您有特別需求若是要放在車上,一掌上型的接收機就可使用。若您需要海上或航空使用時就需要含有導航的資訊,此時您需要一更經確的接收機或含有所在地地圖之接收機。若是海上使用您還可能需要可看深度之接收機。
當您決定所使用之範圍,通常您就可選擇一適當之接收機,而通常都會有好幾種機種及價格。是否選擇高單價機種或額外的付屬套件,端視是否符合您的需求。如果發現有好幾種機種可要求試用是否符合自己所需,有的在操作上一機種較另一機種較容易。
GPS相關名詞解釋
選效SA (Selective Availability)效應 即刻意將衛星上的時鐘撥亂﹐以及廣播不準確的軌道參數使定位誤差達100公尺以上﹐為克服定位精度不準確的問題﹐必須加入差分定位的技術﹐來改善定位的精度。DGPS-差分定位 Differential GPS差分定位一種技術用以增加GPS定位的精確度,經由一已知點所測得的誤差,將一未知的地點所測的位置量扣除誤差的部份,便得以較精確的位置值。GPS的精確定位系統(Precise Positioning system, PPS) 只有授權的使用者具備有解碼設備及密碼及特殊之接收機才有辦法使用精確定位系統。通常能使用這一系統的單位為美軍、某些政府單位及一些被美國政府允許使用的人。其精確度為水平精度17.8公尺、垂直精度27.7公尺、時間精度100 nanosecond。GPS的標準精度定位(Standard Positioning System, SPS) 一般民間使用者皆可使用無需付任何費用,大部份的GPS的接收機皆可使用標準精度定位。標準精度定位的精確度已故意加入誤差(Selective Availability),其精確度為水平精度100公尺、垂直精度156公尺、時間精度167 nanosecond。反愚效應Anti-Spoofing(A-S) 在美國國防部實施AS效應後P電碼皆鎖碼成Y電碼。Y電碼一般用戶無法解碼﹐但一些GPS接收機製造商仍能以特殊的解碼電路技術(如Ashtech Z-tracking)取得較高精度之電碼觀測量﹐但無類似技術的GPS接收機﹐即無法量測﹐例如Leica Wild GPS-System 200﹐在1994年1月31日AS啟動前﹐它可執行P電碼測距﹐及全波長L1與L2載波相位量測。AS啟動後﹐L2上僅測得半波長數據﹐其量測雜訊亦變大。MOB的功能 所謂MOB功能是指人員落海警示功能,這個通常是用在海上的用途。當有船上成員落海的時候,船上的成員比如說船長,他可以使用這個功能將落海所在的位置立刻標示起來,此時GPS立刻鍵入導航模式,而所指向的導航點永遠是人員落海的那個點,在強風巨浪之下,要尋找失蹤落海的人員這功能顯得十分重要。航點(WAYTOINT) 航點是航海用的名詞,它的意思是在一個指定的位置上做標記。就GPS接收機而言,可以在任何一個位置標記航點,將它儲存在記憶體中,以作為將來參考的用途。模擬模式(SIMULAPORMODE) 模擬模式是GARMIN45所特有的模式,它模擬衛星訊號是處於接收狀態之下,這個功能最主要是來幫助使用者在室內或者是無法接收到衛星的環境之下能夠練習使用GPS,當然在室內時可以使用正常模式(MORNALMODE),然而當使用正常模式的時候GARMIN45一直無法接收到衛星訊號時,那麼將在15分鐘後自動關閉電源,這是為了省電的考慮。單頻 vs 雙頻 NAVSTAR定位衛星實際上以兩種無線電頻率傳送定位訊號﹕L1與L2﹐L1上調製出民用(C/A)與軍用(P1)兩種電碼﹐L2上調僅製出軍用碼(P2)。一般民用級的GPS接收機僅能接收L1頻率及其未經鎖碼的電碼以做為定位之用。有兩種方法可以計算出位置﹐最普遍的方法是同時接收四顆(至少是三顆)衛星訊號﹐由L1頻率上的電碼中讀取時間及衛星位置資訊﹐再經由相當複雜的矩陣運算﹐計算出位置。此方法可達到15公尺的精確度。 要達到更好的精確度﹐則必須運用載波相位觀測量(carrier phase measurement)載波相位觀測量是一種運用無線電訊號特性來計算距離的技術。理論上我們是假設從衛星發射至接收機的無線電訊號是呈一直線﹐但是事實並非如此﹐訊號會因大氣層的影響而產生偏向﹐特別是電離層效應。電離層能夠使我們能夠收到遠達數百哩外的無線電台的播送內容。 GPS所使用的頻率波段並不會受到太多的偏向﹐也不會因此造成1公尺或者更大的誤差。而經由雙頻比較可消去電離層效應所產生的誤差﹐這是因為電離層效應與電波頻率有關﹐所以如果GPS接收機可同時接收Ll民用頻率及L2軍用頻率﹐接收機即可判斷出電離層效應所造成的誤差﹐在計算位置之前加以排除。
GPS 在消費性電子產品上的應用
在介紹完有關GPS的基本原理後,我們就要導入正題。也就是探討GPS在消費性電子產品上有那些技術的瓶頸,並且有那些解決方案。首先這裡所指的消費性電子產品泛指一般手持式產品,包括PDA、Handheld PC ( Palm PC), Smart Phone,行動車用導航等。 在已往對於GPS的主要應用層面在於小型航空器、遊艇船隻、個人追蹤導航及特殊用途單一功能的應用。而如今在切入消費性電子市場後,所有的GPS IC設計公司都體認到有四個障礙需要克服。第一個也是最關鍵的問題就是接收靈敏度的問題。一般的消費者在使用GPS時,多數會處在市區內,甚至在建築物內,這樣的環境絕對是GPS的天敵,因為在這樣的環境下,衛星傳送下來的訊號不僅會被衰減,多重反射(multi-path),甚至完全收不到任何訊號(indoor)。為了改善接收靈敏度的問題,Trimble公司無不在RF IC上力求精進。 第二個瓶頸是消耗功率大小,在手持式的電子產品,省電一直是一個最重要的課題。目前在市場上各家IC的功率消耗分別從200mW 到400mW不等。除了基本的耗電需要再繼續降低外,有效的電源管理設計就成了最重要的設計之一。這其中以Trimble公司 的M-Loc 設計最為突出,在程式規劃下,其功率消耗可以一直維持在100 mW 以下。 緊接著要談到的第三個障礙是GPS接收器的尺寸大小,一般的GPS接收器設計,大體包含有射頻IC,GPS ASIC 處理器,CPU和記憶體。再加上週邊其他電路後,其尺寸大約是一般名片大小。然而這樣的尺寸完全不能符合手持式電子產品的需求,因此Trimble公司因應市場上需求設計開發更小包裝尺寸的M-Loc GPS模組。並且在軟體設計上也使得記憶體可以與其他系統共用,進而大大地減少IC的數量 。 最後一個就是價格問題,凡是要同消費大眾普及化的產品,在價格上一定要有競爭力,這表示著GPS廠商一定要打入手持式產品(cellular phone, PDA, etc.)市場,用數量上的優勢來降低價格。只要是在這四個方面領先的廠商,必然能夠順利的切入消費性電子產品的市場。
GPS的市場現況
目前提供GPS的廠家可大致區分為四類,第一類是只提供晶片(GPS Chipset)然後支援客戶研發終端產品(end product)的廠家,如Infineon、Phillip、 IBM、 A&D、ST等。第二類是提供GPS模組的廠家,如Trimble、Motorola、 Rockwell 。第三類是指提供一般商用終端產品的廠家,這類的終端產品有汽車導航器、船用/飛機用/個人用導航器,其特點就是含有方便的導航軟體,友善的人機介面(如LCD、顯示器、Keypad),甚至再加上2-way transceiver (在此汎指GSM CDPD Trunk Radio WCDMA等),此類廠家如Trimble、Garmin、 Magellen 。第四類廠家指的是生產高精確度的GPS接收器,也就是有得到P碼授權的業者,如Leica。當然也有少數提供IP整合方案的廠商如Parthus。 而特別在通訊電子產品上著力,並且可以與行動通訊設備大廠合作,而能夠提供Location Based Service 的有Trimble、Motorola、Rockwell….。 隨著消費性電子產品的應用層面日廣,不少電子產品都在積極地規劃整合GPS的導航功能,最普遍的如電子地圖公司、汽車導航系統、行動電話、PDA、Smart Phone等。一旦GPS的導航功能搭配上適當的電子地圖與規劃完善的導航軟體,則未來GPS將會成為人人必備的生活必需品。
沒有留言:
張貼留言